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Greek symbols

NOMENCLATURE

A approximating function defined in equation (24)
a approximating function defined in equation (23)
Cp specific heat at constant pressure
f weighting function in equation (21)
9 gravitational acceleration
K permeability of the porous medium
k thermal conductivity of the saturated porous

medium
L characteristic length of the plate
Nux local Nusselt number, q.,x/k(Tw - Too)
qw surface heat flux
Ra Rayleigh number based on the characteristic

length L, Kp",gP(Tw-Too)L//17,

Ra; local Rayleigh number KpoogP(Tw - Too)x//17,
T temperature
t time
U dimensionless Darcian velocity in the x

direction, (L/7,Ra2
/
3)u

1/ Darcian velocity in the x-direction
V dimensionless Darcian velocity in the y-direction,

(L/7,RaI/ 3)v
v Darcian velocity in the y-direction
X dimensionless distance in the x-direction, xll,
x coordinate along the horizontal plate
Y dimensionless distance in the y-direction,

yRa 1/3/L
y coordinate perpendicular to the plate pointing

toward the porous medium

(3)

(1)

(2)

2. FORl\IULATION

The dimensionless boundary layer equations for the
problem of transient free convection in a porous medium
adjacent to a semi-infinite isothermal, heated horizontal
surface located along the positive x-axis are

au av
ax + ay =0,

au eo
ay = ax'

00 so 00 a20-+u-+v--OT oX ay - ay2 '

The dimensionless quantities in equations (1)-(3)are related to
their corresponding dimensional variables through the
following definitions:

T = cztRa2
/
3/uL, X = xit; Y = yRa 1/3/L,

U = (L/rxRa2/3)u, V = (L/7,Ra1/3)v, (4)

I. 11''TRODUCTlON

WHEN the wall temperature of a semi-infinite horizontal
upward facing plate is suddenly raised to Tw which is higher
than the ambient temperature of the fluid-filled porous
medium at Too, a thermal boundary layer begins to grow above
the heated plate. The growth of the thermal boundary layer is
the subject of investigation in the present paper. By assuming a
temperature profile that satisfies the boundary conditions, the
governing equations are solved by the Karman-Pohlhausen
integral method. The resulting nonlinear partial differential
equation for the boundary layer thickness is of diffusion type
that can be solved asymptotically for small and large times.
For small time when the leading edge effect is not being felt,
heat is transferred by transient l-dim, heat conduction. For
large time, solutions obtained in this paper agree well with the
exact similarity solution for steady freeconvection obtained in
a previous study [1]. Approximate solutions valid for all times
for the growth of the boundary layer thickness are, also
obtained based on the method of integral relations which has
been shown to be accurate for engineering applications [2].

equivalent thermal diffusivity
coefficient of thermal expansion
ratio of heat capacity of the saturated porous
medium to that of the fluid
dimensionless boundary layer thickness, b/L
boundary layer thickness
porosity
variable defined in equation (9), Y/tJ.
variable defined in equation (17)
dimensionless temperature, (T - Too)/(Tw - Too)
viscosity of fluid
density of the fluid
dimensionless time, cztRa2

/ 3/uL

cz
p
a

s,
'Io
JI
P
T

Superscript
* quantities associated with the case of constant

heat flux

Subscript
00 condition at infinity
w condition at the wall

where 1/ and v are the Darcian velocities in the x- and y
directions. Tw and Too are the temperatures at the wall and at
infinity. L is a characteristic length.

Ra = p",gpK(Tw-Too)L//17,

is the modified Rayleigh number with Poo, Pand JIbeing the
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We now attempt to solve equations (IH3) subject to the
initial and boundary conditions (5H7) approximately by the
Karman-Pohlhausen integral method. To this end, we first
rewrite equation (3) in divergent form and integrate the
resulting equation with the aid of equation (1) to give

(18)

(19)

(17)

(15)!:J.(M'Y=_8-.;;

2 (36 )1/3 [(.fi)213 ]UX l / 3 = -- -- exp - - '12
•

3';; ..;; 36

The local Nusselt number, NuX' is defined as

Equation (11) with the transient term neglected reduces to

o= erf{~)1/

3

'1

where '1 = Ra~pYjX is the similarity variable of the steady
problem [1]. It follows from equations (10) and (16) that the
dimensionless horizontal velocity profile is

where the primes denote the derivatives with respect to X.
Solution of equation (15) subject to the boundary condition
!:J. = OatX = Ois

!:J.(X) = (J;),/3X 2/3= 2.728X2/3. (16)

Substitution of equation (16) into equation (9) yields

(8)

(5)

(6a,b)

(7a,b)

U(X, Y,O) = V(X, Y,O) = O(X,Y,O) = 0,

V(X, 0, r) = 0, O(X,O,'t) = 1,

U(X, 00, r) = O(X,00, 't) = O.

densityofthe fluid at infinity, the thermal expansion coefficient
and the viscosity of the fluid. K is the intrinsic permeability of
the porous medium. 9 is the gravitational acceleration. ex
= kj(pCp)ris theequivalent thermal diffusivity with k denoting
the stagnant thermal conductivity of the saturated porous
medium and (pCp)r the heat capacity of the fluid.

(J = [t(pCp)r+(l-e)(pCp)m]j(pCp)r

is the ratio of the heat capacity ofthesaturated porous medium
to that of the fluid with e denoting the porosity.

The initial and boundary conditions for the problem under
consideration are

a I'" a I'" (CO)- OdY+- UOdY= - -
a't 0 ax 0 ay Y=o

Next, we assume that the temperature distribution is of the
form

where C= Y j!:J.(X, r) with !:J. denoting the dimensionless
boundary layer thickness and erfc(O the complementary error
function. Substituting equation (9) into equation (2) and
integrating, one obtains

U = _1- e-,2 iJ!:J. (10)
.;; ax

where the boundary condition (7a) has been imposed.
Substitution of equations (9) and (10) in equation (8) and after
integration yields

0= erfc(O (9)
where

a; = _k(~T)
oy y~o

is the local surface heat flux. Substitution of equation (17) into
equation (19) yields

Nux 2 (';;)1 /3
~= C - =0.4135 (20)
Ra" '\I1t 36

which agrees very well with the exact value of 0.4200 obtained
from the similarity solution [4].

which is the governing equation for the growth ofthe thermal
boundary layer in a porous medium adjacent to a semi-infinite
horizontal heated plate. Equation (11) is a second-order
partial differential equation of diffusion type as opposed to the
first-order hyperbolic equation for transient Darcian free
convection about a vertical plate [2].

3. ASYl\IPTOTIC SOLUTIO/Io;S

We now obtain the asymptotic solutions of equation (11)for
small and large times.

(i) For small time, we have A = !:J.(r). Equation (11)with the
second term neglected and subject to the initial condition
!:J.(O) = 0 gives

4. APPROXIMATE SOLUTIOl"S VALID FOR ALL TIMES

We now obtain an approximate solution for equation (II)
based on the method of integral relations [2,3]. To this end, we
multiply equation (11) by a weighting function f(X) with the
resulting equation integrated from X = 0 to X = 1 to give

(22)

Next, we assume that

f(X) = X

and

~ r1

f!:J. dx+ ';;(f!:J. a!:J.) _ .;; rl

f'!:J.~!:J. dX
drJo 4 ax ,=1 4 Jo oX

= 2eL dX. (21)
Jo !:J.

(11)a!:J. +.;;~(!:J.a!:J.)=~
a't 4 ax ax !:J.

Equations (13) and (14) show that during the initial stage, the
fluid is motionless and heat is transferred by transient l-dim,
heat conduction. The small time solution ceases to be valid
when convective motion begins.

(ii) For large time, i.e. at steady state, we have !:J. = !:J.(X).

!:J.('t) = 2't1/2
• (12)

Substitution of equation (12) in equations (9) and (10) yields

o= erf{2't~/2). (13)

where A = a2
• Equation (24)with the initial condition A = Oat

't = 0 is integrated numerically by Hamming's method [5]
with a step size of !:J.'t = 10- 4

•

(23)

(24)

!:J.(X, 't) = a('t)X2/ 3

where the weighting function given by equation (22) has been
used by Heinisch et aJ. [3] and by Cheng and Pop [2].
Substituting equations (22) and (23) into equation (21) results
in the following ordinary differential equation:

dA + 2';;A3/8 = 8
dr 9

(14)U=O.
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FIG. l. Comparison of approximate and exact steady state
dimensionless temperature and horizontal velocity profiles.
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FIG. 2. The growth of the dimensionless thermal boundary
layer thickness versus dimensionless time.
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5. COMPARISON OF RESULTS

Figure 1 is a plot of the dimensionless temperature and
horizontal velocity profiles for steady state Darcian free
convect ion about a horizon tal heated plate as obt ained by the
similarity solution and the approximate solution for large time
given by equations (17) and (18). As shown in the figure, the
approximate solutions for large time agree wellwith the exact
similarity solution.

Th e growth of the dimensionless boundary layer th ickness
as a function of dimensionless time at X = 0.1,0.5 and 1.0 is
shown in Fig. 2, where the solid lines are the approximate
solution given by equation(23) with the function a(t) obtained
from the numerical solution of equation (24). The asymptotic
solutions given by equations (12) and (16) for small and large
times are plotted as dashed lines in the same graph for
comparison.
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